Роль и функции витаминов и минералов в организме человека

В 19 веке физиологи пришли к пониманию важности наличия белков, жиров и углеводов в каждодневном рационе человека. Однако, наблюдения показывали, что этого недостаточно. Впервые необходимость каких-то дополнительных веществ в питании для нормального состояния была замечена на курах. Стало ясно, что куры, которых кормили отходами пищи с очищенным рисом (дело было в Азии), болеют. Наблюдаемые симптомы были аналогичны тем, которые появлялись у многих людей.

Роль витаминов в организме человека

Так был открыт первый витамин, которому впоследствии присвоили буквенное обозначение B1. При изучении строения химики обнаружили у этого вещества аминогруппу. Отсюда пошло название – «амин жизни». Термин стали применять по отношению ко всем веществам, отсутствие которых в пище, даже в минимальных количествах, приводило к появлению патологий.

Читать далее «Роль и функции витаминов и минералов в организме человека»

Роль и функции углеводов в организме человека

Углеводы – это самый распространенный класс органических веществ. Роль углеводов в организме разнообразна, зависит от их строения, места образования. Максимальное количество углеводов содержится в растениях, где их концентрация достигает 90%. Это объясняется способностью растений синтезировать углеводы из углекислого газа и воды под действием лучей солнца. Называется такая реакция фотосинтезом.

Роль углеводов в организме

В фотосинтезе принимает участие пигмент хлорофилл. В животных организмах концентрация углеводов значительно меньше, составляет в среднем 2% от массы тела. Некоторые авторы указывают содержание 20%, подразумевая концентрацию в сухом остатке живых существ. В организме человека, по мнению профессора А.П. Нечаева, содержание углеводов не превышает 1% от массы всего тела.

Образование углеводов в живых системах происходит иначе, чем в растениях. Есть также различия в строении.

Состав углеводов

Название класса сформулировали первооткрыватели, у которых сложилось впечатление о содержании в новых веществах угля – углерода и воды в строго определенном соотношении. Впоследствии был установлено, что строение и состав углеводов несколько иной. Название осталось. В начале 20 века Международная комиссия рекомендовала другое название, которое на практике не закрепилось. Приводить его здесь не имеет смысла.

Углеводы – огромный класс веществ, который принято подразделять на простые и сложные

Простые углеводы, несмотря на название, устроены не очень просто. Называют их моносахаридами. По количеству атомов углерода они подразделяются на группы. В целом атомов углерода и атомов кислорода у них содержится поровну, количество атомов водорода вдвое больше, чем каждого из указанных.

  1. Триозы – содержат в основе молекулы три атома углерода. В свободном виде встречаются редко. Производные триоз, содержащие фосфор, образуются при расщеплении углеводов в организме человека.
  2. Тетрозы распространены мало.
  3. Пентозы (5 атомов углерода в скелете молекулы) встречаются в природе чаще, обычно, как составляющая часть более крупных соединений.
  4. Гексозы – самая важная и распространенная группа простых углеводов. Они содержат 6 атомов углерода. К гексозам относится глюкоза, фруктоза, галактоза и многие другие вещества. Самый важный простой углевод, обеспечивающий все обменные процессы человека, — это глюкоза. В биохимических реакциях в организме она участвует в виде фосфорных производных. Сложные углеводы также подразделяются на группы. Атомов кислорода в них меньше, чем атомов углерода. Сложные углеводы могут иметь средние размеры и очень большие размеры.

Сложные углеводы средних размеров называют сахароподобными или олигосахаридами. Приставка в переводе с греческого обозначает «малый». Они содержат до 10 остатков моносахаридов.

  1. Сложные углеводы с очень большой молекулярной массой называют несахароподобными или полисахаридами.
  2. Они имеют длинные, иногда разветвленные цепи из моносахаридов. При разрушении под действием воды все полисахариды в конечном итоге распадаются до смеси моносахаридов.

Роль углеводов в организме

В целом в биосфере углеводов содержится больше, чем всех остальных органических соединений в сумме. Простые и сложные углеводы в равной мере важны для обеспечения нормальной жизнедеятельности. Главные функции углеводов в организме можно представить в перечне.

  • При окислении 1 гр углеводов в организме образуется 4 ккал энергии, часть из которой расходуется на обеспечение нужд органов, тканей, работу сердца, мышц. «Лишняя» энергия, не востребованная в данный момент времени, может запасаться в особенном соединении – АТФ (аденозинтрифосфорная кислота). При появлении потребности АТФ может расщепляться и снабжать организм недостающей энергией. Углеводы обеспечивают 58% суточных энергозатрат человека.
  • Разнообразно участие углеводов в непосредственном и опосредованном построении тканей организма.
    • Сложные производные – мукополисахариды формируют соединительные ткани, хрящевое наполнение суставов.
    • Остатки моносахаридов, образующиеся при расщеплении углеводов в организме, используются для образования (биосинтеза) новых белков, липидов.
  • Функции углеводов в клетке заключаются в регуляции обмена жиров. Часто при сильных физических нагрузках, низком содержании углеводов в рационе происходит накопление вредных продуктов, например, ацетона. Все особенности питания в период активных физических занятий целесообразно согласовать со специалистом.
  • Многие моносахариды имеют сладкий вкус, доставляют удовольствие при приеме пищи. Это один из необходимых источников положительных эмоций, необходимых для нормальной работы нервной системы.
  • Простые и сложные углеводы участвуют в запасании (депонировании) энергии. При избытке моносахаридов из них образуется полисахарид – гликоген, который накапливается в печени и мышцах.
  • Разнообразны специфические функции углеводов в организме.
    • Сложные производные принимают участие в формировании группы крови.
    • Некоторые биополимеры, имеющие углеводную составляющую, расщепляют чужеродные вирусы, токсины.
    • Комплексы белков с углеводами обеспечивают передачу нервных импульсов.
    • Гепарин предотвращает образование сгустков в кровеносных сосудах.
  • Важна функция углеводов в клетках печени. Глюкуроновая кислота, образующаяся при окислении глюкозы, связывает токсины в печени, превращает их в растворимую форму, которая легко выводится из организма.

Расщепление углеводов в организме

По пищевой ценности углеводы подразделяют на усваиваемые  и неусваиваемые.

К усваиваемым относят:

  • моносахариды,
  • сахароподобные сложные углеводы,
  • некоторые несахароподобные углеводы.

Из полисахаридов человек может усваивать только крахмал, гликоген (животный крахмал).

Легче всего усваиваются углеводы с маленькой и средней массой молекулы. По этому признаку происходит деление на быстрые и медленные углеводы.

  • Моносахариды, например глюкоза, усваиваются очень быстро, т.к. ей не нужно претерпевать никаких предварительных реакций. Углеводы, состоящие из смеси двух моносахаридов усваиваются тоже быстро. Например, мед состоит из смеси равных частей глюкозы и фруктозы. Глюкоза к усвоению готова. Фруктозе нужно только немного видоизмениться.
  • Огромные молекулы полисахаридов, типа крахмала, гликогена, усваиваются медленнее. Цепь, состоящая из нескольких тысяч звеньев сначала должна претерпеть расщепление до моносахаридов. На это уходит время и некоторая энергия.

Быстрые и медленные углеводы

Быстрые и медленные углеводы одинаково важны для человека. Следует учитывать скорость их расщепления, в соответствии с которой корректировать рацион. Интенсивность процессов усвоения углеводов характеризуется гипогликемическим индексом углеводов, который отображает способность продукта повышать уровень глюкозы в крови. Чем быстрее происходит всасывание в пищевом тракте, тем быстрее увеличивается концентрация глюкозы в крови.

  • Максимальный гипогликемический индекс углеводов имеет глюкоза, 105 единиц. Солодовый сахар – мальтоза, состоящий из двух остатков глюкозы имеет показатель 100 единиц.
  • Фруктоза характеризуется цифрой 20. Это объясняется тем, что для превращения в глюкозу она должна перегруппироваться (изомеризоваться). На такую трансформацию фруктозы требуется время.
  • Низкий показатель фруктозы объясняет не очень высокие цифры ГИ для сахарозы (59). Она состоит из двух связанных звеньев, одним из которых является фруктоза. Нужно звенья сначала расщепить, потом фруктозе видоизмениться.
  • У меда такие же моносахариды – глюкоза и фруктоза, но они не связаны друг с другом, находятся в смеси. Звенья расщеплять не нужно. ГИ меда выше, чем у сахарозы, составляет 87.
  • У крахмала, содержащегося в приготовленных продуктах: вареном белом рисе, картофеле, пшеничном хлебе ГИ не мал, составляет 72; 90, 72, соответственно. Это объясняется расщеплением молекул крахмала при термической обработке.

Углеводы, в отличие от жиров и белков, начинают расщепляться уже в ротовой полости. В слюне присутствует фермент, ускоряющий эти процессы. Это одна из причин, из-за которой пищу рекомендуют тщательно пережевывать. Затем расщепление продолжается в остальных отделах пищевого тракта. В конечном итоге все усвояемые углеводы расщепляются, превращаются в глюкозу.

  • Часть глюкозы окисляется с образованием энергии.
  • Другая часть расщепляется и поставляет осколки молекул в другие обменные.
  • «Лишняя» глюкоза запасается в виде животного крахмала – гликогена, откладывается в печени и мышцах про запас.

Полисахариды: целлюлоза, инулин, пектин  не усваиваются в организме. Они относятся к балластным веществам.

Роль балластных веществ

  • Клетчатка, которая относится к неусваиваемым веществам, усиливает работу кишечника. Она инициирует сокращение гладких мышц, благодаря которому пища эффективнее продвигается по кишечному тракту.
  • Балластные вещества препятствуют гниению остатков пищи в кишечнике, нормализуют его микрофлору.
  • Пектиновые вещества, которые также не усваиваются организмом человека, способствуют выведению солей тяжелых металлов, радионуклеидов, токсичных компонентов. Диету с повышенным содержанием пектиновых веществ назначали ликвидаторам последствий трагедии на ЧАЭС.
  • Балластные вещества способствуют выведению излишков холестерина.
  • Пищевые волокна нормализуют обмен жиров, минимизируя вероятность появления ожирения.

Источники углеводов

Из всего количества потребляемых человеком углеводов 80% составляет крахмал и тростниковый сахар — сахароза. Крахмал содержится в значительных количествах в картофеле, зерновых, бобовых культурах. В пшенице, просе, рисе, гречихе крахмала содержится более 50%, в горохе  — 44%, в овсе – 36,5%. Из приведенных зерновых гречиха отличается максимальным содержанием клетчатки – 10,8%. Это в 2 раза больше, чем в горохе; в 4 раза больше, чем в кукурузе, любых сортах пшеницы. Важно отметить, что при повышении сортности хлеба в нем в 1,5 раза в среднем увеличивается содержание крахмала и в 3 раза сокращается концентрация клетчатки. Для здорового питания рекомендуют употреблять хлеб из муки с минимальной степенью очистки, грубого помола.

  • В период развития человечество старалось максимально очистить пищевое сырье. Научились освобождать зерна круп от микропримесей шелухи, рафинировать и отбеливать сахар. Со временем выяснилось, что в процессе старательной очистки пищевого сырья теряется много ценных компонентов. В продаже стал появляться хлеб грубого помола, желтый сахар, не полностью отбеленный рис. На отечественном рынке ассортимент здоровых продуктов еще не очень велик, но тенденция обнадеживает.

Главные источники углеводов – это овощи и фрукты

  • Самый распространенный простой углевод – глюкоза (виноградный сахар). Ее много в ягодах, фруктах, меде, зеленых частях растений.
  • Фруктоза содержится в меде, свекле, фруктах, входит составной частью в тростниковый сахар.
  • Тростниковый сахар – сахарозу получают из сахарного тростника, свеклы. Концентрация сахарозы велика в продуктах, к которым ее добавляют. Это кондитерские изделия, соки, джемы, напитки, мороженое.
  • Молочный сахар лактоза содержится в молоке. Это очень полезное вещество для детей и части взрослых, у которых сохранилась активность фермента ее расщепляющего. Взрослые люди у которых этот фермент уже не активен, цельное молоко переваривают плохо. В таком случае лучше употреблять кисломолочные продукты.

Неусваиваемые углеводы  содержатся в овощах, фруктах. В кожуре цитрусовых, например, их содержится до 30%; в кожуре яблок – до 20%.

Сколько углеводов нужно в день

Рекомендации должны быть индивидуальными, определяться энергозатратами человека.  Ответить на вопрос — сколько углеводов нужно в день употреблять каждому – сложно. Средний диапазон – 365 – 500 гр в сутки. В России принята норма – 5 гр усваиваемых углеводов на 1 кг массы тела. При тяжелой физической работе эта цифра может быть увеличена до 8 гр.

При этом содержание крахмала может составлять 350 гр, простых и сахароподобных сложных углеводов – от 50 гр до 100 гр. Последние рекомендации ВОЗ устанавливают 10% предел содержания свободных, быстрых сахаров. Минимальная масса балластных веществ – 25 гр. Людям, увлекающимся любыми видами спорта, норму следует уточнить у специалиста, располагающего информацией об индивидуальной физической нагрузке.

Избыток углеводов в организме вызывает системные нарушения обмена всех веществ. Заболевания, связанные с неправильной организацией питания называются алиментарными. При  избытке углеводов в организме перегружается поджелудочная железа, которая продуцирует гормон – инсулин. Это может привести к диабету, ожирению, нарушению работы нервной системы.

Недостаток углеводов в организме приводит к понижению энергетического тонуса. Человек может ощущать упадок сил, апатию, постепенно проявляются нарушения липидного обмена. Могут возникать негативные проявления со стороны деятельности нервной системы. Первые признаки недостатка углеводов в организме должны послужить сигналом к необходимости изменить рацион.

Разумный подход к организации питания будет вознагражден хорошим физическим состоянием человека.

Алексей Динулов, Элит — Тренер FPA

Роль и функции жиров в организме человека

Жирами принято называть группу простых липидов, способных утилизироваться организмом человека, имеющих общие структурные особенности. Жиры, некоторые липиды, их составные части ответственны за многие процессы нормальной жизнедеятельности человека.

Роль жиров в организме

Функции жиров в организме

Физиология, медицина, биохимия интенсивно развиваются параллельно с появлением новых приборных возможностей исследования. Постоянно появляются дополнительные научные данные, с учетом которых основные функции жиров в организме можно представить в предлагаемой совокупности.

  • Энергетическая. В результате окислительного расщепления из 1 гр жира опосредованно образуется 9 ккал энергии, что значительно превышает аналогичные цифры для белков и углеводов.
  • Регуляторная. Установлено, что в результате обменных реакций 1 гр жира в организме синтезируется 10 гр «внутренней» воды, которую правильнее называть эндогенной. Вода, которую мы получаем с пищей, напитками, называется «внешней», экзогенной. Вода – интереснейшее вещество, склонное объединяться в группы – ассоциаты. Этим отличаются характеристики воды, претерпевшей таяние, очистку, кипячение. Аналогично отличаются качества воды, синтезировавшейся в организме и поступившей извне. Эндогенная вода синтезироваться должна обязательно, хотя ее роль окончательно пока не установлена.
  • Структурно-пластическая. Жиры, самостоятельно либо в комплексе с белками, углеводами, участвуют в образовании тканей. Важнейшее значение имеет слой клеточных оболочек, состоящий из липопротеидов – структурных образований из липидов и белков. Нормальное состояние липидного слоя мембраны клетки обеспечивает обмен веществ и энергии. Так структурно-пластические функции жиров в клетке интегрируется с транспортной функцией.
  • Защитная. Подкожный слой жира выполняет теплосохраняющую функцию, защищает организм от переохлаждения. Это хорошо заметно на примере купающихся в прохладном море детей. Малыши с незначительным слоем подкожного жира замерзают очень быстро. Дети с нормальной жировой прослойкой могут принимать водные процедуры гораздо дольше. Естественный жировой слой на внутренних органах защищает их в некоторой степени от механических воздействий. Незначительная жировая прослойка покрывает в норме многие органы.
  • Обеспечивающая. Натуральные жиры – это всегда смеси, содержащие дополнительные биологически активные вещества. Роль жиров в организме заключается в параллельном обеспечении важными для физиологии компонентами: витаминами, витаминоподобными соединениями, стеринами, некоторыми сложными липидами.
  • Косметически-гигиеническая. Тонкий слой жиров, имеющийся на коже, придает ей упругость, эластичность, защищает от растрескивания. Цельность кожи, не содержащей микротрещины, исключает попадание микробов.

Состав жиров

Жиры – это группа веществ, состоящая из одного или нескольких сложных эфиров высокомолекулярных карбоновых кислот и спирта – глицерина. Кислоты, содержащие более 4 атомов углерода, принято называть высшими жирными. Состав жиров варьируется в зависимости от источника выделения. Помимо указанных сложных эфиров натуральные жиры могут содержать небольшое количество свободных высокомолекулярных кислот, ароматизирующих веществ, пигментов.

По структурным особенностям кислотных остатков всю группу принято разделять на насыщенные и ненасыщенные жиры.

  • В насыщенных жирах все атомы углерода в кислотном остатке связаны друг с другом только одинарными связями. Самая маленькая насыщенная кислота, входящая в состав жиров, называется масляной. При длительном хранении сложноэфирная связь может разрушаться, кислоты освобождаются. Свободная масляная кислота имеет резкий запах, горьковатый вкус. Это одна из причин ухудшения качеств жира при длительном хранении.

Важно! Насыщенные высшие карбоновые кислоты преобладают в основном в животных жирах.

Наиболее распространены в природных жирах кислоты с большим, чем у масляной кислоты количеством атомов углерода и массой молекул, например пальмитиновая, стеариновая. Пальмитиновую впервые выделили из масла пальм, ее содержание в котором достигает 50%. Стеариновую кислоту впервые извлекли из сала свиней, название которого на греческом языке стало основой названия кислоты. Все насыщенные кислоты плохо растворяются в воде, что осложняет выполнение функций жиров в клетке.

  • Ненасыщенными жирами называют сложные эфиры со значительным содержанием ненасыщенных высокомолекулярных кислот: олеиновой, линолевой, линоленовой, арахидоновой. Термин «ненасыщенные» обусловлен наличием между атомами углерода в таких молекулах не одинарных, а двойных связей. На обыденном языке можно сказать, что такие вещества не полностью насыщены водородом. Для обычных потребителей важны не структурные особенности, а свойства из них происходящие.

Важно! Все ненасыщенные жиры содержатся в основном в растениях, имеют низкие температуры плавления.

При нормальных комнатных условиях они находятся в жидком состоянии. Ненасыщенные кислоты принято подразделять на группы: олеиновая кислота и структурно похожие, линолевая кислота и ей подобные, линоленовая кислота с гомологами, арахидоновая кислота. Три последние группы имеют больше, чем одну двойную связь в молекуле. Поэтому их называют полиненасыщенными (ПНЖК).  Устаревшим считают название этого комплекса кислот витамином F. Сейчас часто кислоты типа линоленовой называют омега-3, типа линолевой и арахидоновой – омега – 6 кислотами.

Физиологическая роль полиненасыщенных жирных кислот

  • Структурная функция заключается в формировании мембран клетки.
  • Пластическая роль выполняется при образовании соединительной ткани, поверхности нервных волокон.
  • Антисклеротическая функция сводится к способности выводить излишек холестерина из полости кровеносных сосудов. Жиры и холестерин должны поступать в организм в строго определенном соотношении. Избыточный холестерин, поступающий извне, в совокупности с синтезирующимся внутри организма может провоцировать изменения сосудов.
  • ПНЖК увеличивают защитные ресурсы организма по отношению к внешним воздействиям, например, вирусов, микробов, неблагоприятных экологических факторов.
  • Для нормальной работы сердечнососудистой системы важно иметь физиологические показатели свертываемости крови. ПНЖК способствуют нормализации свертываемости, склонной с возрастом человека увеличиваться.
  • В научной литературе есть информация о способности ПНЖК расщеплять некоторые виды злокачественных клеток.
  • Из арахидоновой кислоты при участии ферментов образуются простагландины, которые относят к гормонам и гормоноподобным веществам. Простагландины обладают разнохарактерным регуляторным действием, в частности опосредованно улучшают расщепление жиров в организме.

ПНЖК незаменимы и должны содержаться в каждодневном рационе.

Источники жиров растительного и животного происхождения

Все пищевые продукты получают из животных и растений. Жиры не являются исключением. В настоящее время известно более 600 примеров различных жиров. Превалирующее (более 400) количество – это растительные вещества. 80 видов – жиры животных, более 100 видов – жиры обитателей водоемов. Источники жиров растительного и животного происхождения разнообразны, в огромной мере определены кулинарными традициями, местом проживания, климатом, уровнем дохода населения.

  • Часть жиров видна зрительно. Это сливочное и растительные масла, сало, животные жиры в составе мяса, маргарины.
  • Некоторые жиры продуктов невидимы. Они равномерно распределены в мясных, кондитерских изделиях, молочных продуктах, хлебе, рыбе, крупах, орехах.

Сколько жиров нужно в день?

Потребность каждого человека следует определять с учетом многих обстоятельств: возраста, вида деятельности, ареала проживания, типа конституции. При занятиях спортом целесообразно получить консультацию специалиста, который сможет учесть все индивидуальные особенности. Важно помнить, что животные жиры и холестерин поступают с пищей параллельно, составлять рацион с учетом всех компонентов.

Ответ на вопрос «Сколько жиров нужно в день поглощать каждому человеку?» можно представить в виде следующего перечня:

  • суммарное количество всех жиров -80-100 гр;
  • растительных масел – 25-30 гр;
  • ПНЖК – 2-6 гр;
  • холестерина – 1 гр;
  • фосфолипидов – 5 гр.

В целом содержание жира в суточном рационе должно составлять около 30%. Жителям северных регионов можно увеличивать содержание жиров в каждодневном рационе до 40%.

Максимальное количество жиров содержится в очищенных растительных маслах (до 99,8%), в сливочных маслах – до 92,5% жиров, в маргаринах – до 82%.

  • Нужно помнить, что один из методов получения маргаринов заключается в насыщении водородом растительных масел. Процесс называется гидрогенизацией. При этом в продукте получаются изомеры, обладающие негативным физиологическим действием – транс-изомеры. В последнее время используют иной метод получения маргарина – модификацию растительных масел. Вредных изомеров при этом не образуется. Изначально маргарин был изобретен во Франции в конце 19 века для питания бедных слоев населения и военных. По мере возможности маргарин из рациона лучше исключить.

В молочных продуктах содержание жиров может достигать 30%, в крупах – 6%, в твердых сырах – 50%.

Учитывая важность ПНЖК, следует помнить об источниках их содержания
  • Максимальное количество незаменимых кислот, прежде всего арахидоновой, находится в жире рыб. Идеальный поставщик этой кислоты – рыбья печень.
  • Много ПНЖК содержится в растительных маслах. Содержание линолевой кислоты в кукурузном масле достигает 56%, в подсолнечном – 46%.
  • Удельный вес ПНЖК не превышает 22 % в свином сале, курином, гусином жире. Оливковое масло содержит 15% незаменимых кислот.
  • В сливочном масле, большинстве животных жиров, в молочных жирах ПНЖК содержится мало, до 6%.

В перечне обязательных компонентов натуральных жиров, рекомендуемых к ежедневному питанию, находится холестерин. Нужное количество мы получаем, съедая яйца, сливочное масло, субпродукты. Злоупотреблять ими не следует.

В пище обязательно должны присутствовать фосфолипиды, относящиеся к сложным липидам. Они способствуют транспортировке продуктов расщепления жиров в организме, их эффективной утилизации, предотвращают жировое перерождение клеток печени, нормализуют обмен веществ в целом. Фосфолипиды содержатся в большом количестве в желтке яиц, печени, молочных сливках, сметане.

Избыток жиров в пище

При излишке жиров в каждодневном рационе деформируются все обменные процессы. Избыток жиров в пище приводит к преобладанию процессов накопления над реакциями расщепления. Происходит жировое перерождение клеток. Они не могут выполнять физиологические функции, что провоцирует многочисленные нарушения.

Недостаток жиров в пище

Если жиров поступает мало, нарушается энергетическая подпитка организма. Какая-то часть может синтезироваться из остатков молекул, образующихся при утилизации белков, углеводов. Незаменимые кислоты образовываться в организме не могут. Следовательно, все функции этих кислот не реализуется. Это приводит к упадку сил, понижению сопротивляемости, нарушению холестеринового обмена, гормональному дисбалансу. Абсолютный недостаток жиров в пище встречается редко. Нехватка полезных компонентов жира может проявляться при несоблюдении правил сочетания пищевых жиров.

Алексей Динулов, Элит — Тренер FPA

Роль и функции белков в организме человека

 

Белки являются самым важным классом органических веществ, из которых человек состоит, постоянно в них нуждается.

Роль белков в организме

Роль белков в организме

Огромное значение белков для организма обусловлено их функциями.

  • Пластическая. Из белков построены ткани человека. В среднем во всем теле белки занимают 45% массы сухих веществ. Максимальное содержание выявлено в мышцах. Оно достигает 34,7 % общего количества белка в организме. Содержание в костной ткани составляет 18,7 % суммарной концентрации. В коже содержится 11,5% белковых веществ. Остальные белки выявлены в зубах, мозге и нервной ткани, печени, селезенке, сердце, почках. Структурно-пластическая роль белков в организме может быть реализована при постоянном поступлении качественных продуктов питания.
  • Энергетическая. Окисляясь в организме человека, белки поставляют энергию в количестве 4 ккал из 1 гр. Это значимая составляющая часть в общем энергетическом балансе.
  • Каталитическая. При жизнедеятельности в организме человека одновременно проходят сотни биохимических процессов. Это становится возможным только благодаря ферментативному ускорению. Моделирование аналогичных реакций вне живых систем потребовало бы большого количества времени, измеряемого часами, неделями. Все ферменты сделаны из белков. Без белковых веществ деятельность биологических катализаторов не осуществима.
  • Регуляторная. Все процессы в организме человека регулируются специфическими веществами – гормонами, которые образуются в железах внутренней секреции. Химическая природа гормонов различна. Многие гормоны являются белками, например, инсулин, некоторые гормоны гипофиза. Недостаточное поступление в организм белковых веществ, может спровоцировать изменения гормонального фона.
  • Транспортная. Белки – переносчики осуществляют доставку разнообразных молекул по всему организму. Например, гемоглобин поставляет кислород во все органы, захватывая его в поверхностных слоях легочной ткани, освобождая по месту доставки.
  • Защитная. Демонстрируется белками типа интерферон, глобулины. Механизмы защиты реализуются разные. Например, иммуноглобулины, будучи антителами, связывают чужеродные возбудители в неактивные комплексы. Интерферон нивелирует способность вирусов к размножению. Белки биологических катализаторов – лизоцимов, расщепляют клетки бактерий. Защитная физиологическая роль белка делает возможной жизнь человека в окружении болезнетворных «соседей».
  • Буферная. В жидких системах человека, в частности, в крови для нормальной жизнедеятельности организма должна поддерживаться постоянная кислотность среды. При ее изменениях вследствие разных факторов восстановить постоянный состав могут буферные белки. Особенно выраженной буферной способностью обладает гемоглобин.
  • Рецепторная. Редко кто задумывается о работе сложнейшей системы передачи информации в организме человека. Необходимые участники этого процесса — белковые рецепторы. Рецепторная роль белка в клетке сводится к запуску цепи биохимических превращений, в результате которых мы реагируем на сигналы. Например, для того, чтобы мы отдернули руку от горячего предмета, должны сработать белковые рецепторы. При нарушении их функционирования нормальная деятельность организма становится невозможной. Сетчатка глаза воспринимает цветовые оптические волны также участием белкового рецептора под названием родопсин.

Представленные основные функции белков иллюстрируют важность этого класса веществ в обеспечении нормальной жизни человека.


В 19 веке ученые констатировали:

  • белковые тела уникальны, являются сутью жизни;
  • необходим постоянный обмен веществ между живыми существами и окружающей природой.

Эти положения остаются неизменными по настоящее время.


Основной состав белков

Огромные молекулярные единицы простого белка, называемого протеином, образованы химически соединенными маленькими блоками – аминокислотами с одинаковыми и различающимися фрагментами. Такие структурные композиции называют гетерополимерами. В натуральных белках всегда находят только 20 представителей класса аминокислот. Основной состав белков характеризуется обязательным наличием углерода — C, азота – N, водорода — H, кислорода — O. Нередко встречается сера — S. В сложных белках, называемых протеидами, кроме аминокислотных остатков содержатся другие вещества. Соответственно, в их составе могут находиться фосфор — P, медь — Cu, железо — Fe, иод – I, селен – Se.

Аминокарбоновые кислоты натуральных белков классифицируют по химическому строению и биологической важности. Химическая классификация важна для химиков, биологическая – для всех.

В организме человека постоянно идет два потока превращений:

  • расщепление, окисление, утилизация поступивших с пищей продуктов;
  • биологический синтез новых необходимых веществ.

12 аминокислот из всегда обнаруживаемых в природных белках могут быть созданы биологическим синтезом организма человека. Они называются заменимыми.

8 аминокислот никогда в человеке не синтезируются. Они незаменимы, должны поступать регулярно с пищей.

По признаку присутствия незаменимых аминокарбоновых кислот белки подразделяют на два класса.

  • Полноценные белки имеют все нужные организму человека аминокислоты. Требуемый набор незаменимых аминокислот вмещают белки творога, молочной продукции, птицы, мяса крупного рогатого скота, морской и пресноводной рыбы, яиц.
  • В неполноценных белках одной или нескольких важных кислот может не хватать. К таковым относятся растительные белки.

Для оценки качества пищевых белков медицинское мировое сообщество сравнивает их с «идеальным» белком, имеющим строго выверенные пропорции заменимых и особо важных незаменимых аминокислот. В природе «идеального» белка не существует. Максимально приближаются к нему белки животных. Растительным белкам часто не хватает до нормативной концентрации одной или несколько аминокислот. Если недостающее вещество добавить, белок станет полноценным.

Основные источники белков растительного и животного происхождения

В отечественном научном сообществе, занимающемся всесторонним изучением пищевой химии, выделяется группа профессора А.П.Нечаева, его коллег, учеников. Коллективом были проведены определения содержания белков в основных продуктах питания, имеющихся на российском рынке.

  • Важно! Выявленные цифры информируют о содержании белка в 100 гр продукта, освобожденного от несъедобной части.

Содержание белков в растительных продуктах

  • Самое большое количество белка содержится в сое, семечках тыквы, арахисе (34,9 – 26,3 гр).
  • Значения от 20 до 30 гр выявлены в горохе, фасоли, фисташках, семечках подсолнечника.
  • Миндаль, кешью, фундук характеризуются цифрами от 15 до 20 гр.
  • Грецкий орех, макароны, большинство круп (кроме риса, кукурузной крупы) содержат от 10 до 15 гр белка в 100 гр продукта.
  • В диапазон от 5 до 10 гр попадают рис, кукурузная крупа, хлеб, чеснок, курага.
  • В 100 гр капусты, грибов, картофеля, чернослива, некоторых сортах свеклы содержание белка составляет от 2 до 5 гр.
  • Изюм, редька, морковь, сладкий перец имеют мало белка, их показатели не превышают 2 гр.

Если вам не удалось найти здесь растительный объект, значит, концентрация белка в нем слишком мала либо его там нет вовсе. Например, во фруктовых соках белка очень мало, в натуральных растительных маслах – нет совсем.

Содержание белков в продуктах животного происхождения

  • Максимальная концентрация белка выявлена в икре рыб, твердых и плавленых сырах, мясе кролика (от 21,1 до 28,9 гр).
  • Большое количество продуктов содержит от 15 до 10 гр белка. Это птица, морская рыба (кроме мойвы), мясо крупного рогатого скота, креветки, кальмары, творог, брынза, пресноводная рыба.
  • Мойва, куриное яйцо, свинина содержат от 12,7 до 15 гр белка на 100 гр продукта.
  • Йогурт, сырки творожные характеризуются цифрами 5 – 7,1 гр.
  • Молоко, кефир, ряженка, сметана, сливки содержат от 2,8 до 3 гр белка.

Не представляет интереса информация об основных источниках белков растительного и животного происхождения в продуктах, претерпевших многоэтапную технологическую обработку (тушенке, сосисках, ветчине, колбасах). Они не рекомендованы для регулярного здорового питания. Кратковременное употребление таких продуктов не имеет существенного значения.

Роль белка в питании

В результате обменных процессов в организме постоянно образуются новые белковые молекулы, взамен старых. Скорость синтеза в различных органах не одинакова. Белки гормонов, например, инсулина восстанавливаются (ресинтезируются) очень быстро, за часы, минуты. Белки печени, слизистых покровов кишечника регенерируются за 10 дней. Белковые молекулы мозга, мышц, соединительной ткани восстанавливаются дольше всего, восстановительный синтез (ресинтез) может длиться до полугода.

Процесс утилизации и синтеза характеризуется балансом азота.

  • У сформировавшегося человека при полном здоровье азотистый баланс равен нулю. При этом суммарная масса азота, поступающего с белками в процессе питания, равно массе выводящегося с продуктами распада.
  • Молодые организмы интенсивно развиваются. Баланс азота при этом положительный. Поступает белка много, выводится меньше.
  • У стареющих, больных людей баланс азота отрицательный. Выделяющаяся с продуктами обмена масса азота больше, чем поступающая при приеме пищи.

Роль белка в питании заключается в обеспечении человека требуемым количеством аминокислотных компонентов, пригодных для участия в биохимических процессах организма.

Для обеспечения нормального обмена веществ важно знать — сколько белков нужно в день потреблять человеку

Отечественные и американские физиологи рекомендуют съедать 0,8 – 1 гр белка на 1 кг массы человека. Цифры весьма усреднены. Количество сильно зависит от возраста, характера работы, образа жизни человека. В среднем рекомендуют употреблять от 60 гр до 100 гр белка в день. Для мужчин, занимающихся физической работой, норму можно увеличивать до 120 гр в день. Для лиц, перенесших хирургические операции, инфекционные заболевания норма также увеличивается до 140 гр в день. Диабетикам рекомендуют диеты с повышенным содержанием белковых продуктов, которое может достигать 140гр в день. Люди, имеющие нарушения обмена, склонность в подагре, должны употреблять белка значительно меньше. Норма для них составляет 20 – 40 гр в день.

Для лиц, занимающихся активными видами спорта, наращивающими массу мышц, норма существенно увеличивается, может достигать 1,6-1,8 гр на 1 кг веса спортсмена.

  • Важно! У тренера целесообразно уточнить ответ на вопрос – сколько белков нужно в день употреблять при нагрузках. Профессионалы владеют информацией об энергетических затратах при всех видах тренировок, путях поддержания нормальной жизнедеятельности организма спортсмена.

Для реализации всех физиологических функций важно не только наличие в белке незаменимых аминокислот, а также эффективность их усвоения. Белковые молекулы имеют различные уровни организации, растворимость, степень доступности пищеварительным ферментам. 96% белков молока, яиц расщепляются эффективно. В мясе, рыбе благополучно перевариваются 93-95% белков. Исключение составляют белки кожи, волос. Растительные белоксодержащие продукты перевариваются на 60-80%. В овощах усваивается 80% белков, в картофеле – 70%, в хлебе – 62-86%.

Рекомендуемая часть белков из источников животного происхождения должна составлять 55% от всего количества белковой массы.

  • Недостаток белка в организме приводит к значительным изменениям обмена веществ. Такие патологии называют дистрофией, квашиоркором. Впервые нарушение выявлено у жителей диких племен Африки, характеризуется отрицательным балансом азота, нарушением работы кишечника, атрофией мышц, остановкой роста. Частичная нехватка белка может проявляться подобными симптомами, которые некоторое время могут быть выражены умеренно. Особенно опасен недостаток белка в организме ребенка. Такие нарушения рациона могут спровоцировать физическую и интеллектуальную неполноценность растущего человека.
  • Избыток белка в организме перегружает выделительную систему. Увеличивается нагрузка на почки. При имеющихся патологиях в почечной ткани процесс может усугубиться. Очень плохо, если избыток белка в организме сопровождается недостатком остальных ценных компонентов пищи. В древние времена в странах Азии существовал метод казни, при котором осужденного кормили только мясом. В результате преступник погибал от образования продуктов гниения в кишечнике, следующего за этим отравления.

Разумный подход к обеспечению организма белком гарантирует эффективную работу всех систем жизнедеятельности.

Алексей Динулов, Элит — Тренер FPA